تقویت‌کننده

آمپلی فایر یا تقویت کننده های الکترونیکی در موسیقی برای تقویت صدای سازهای پیکاپ داری مانند گیتار الکتریک، گیتار باس، ویولون و ... استفاده می شود.






عملکرد دستگاه

امپلی فایرها در به طور عمده دارای دو مدار الکتریکی به نام دریافت سیگنال صدا (Pre Amp) و تقویت کنندهٔ صدا (Power Amp) هستند. از مهمترین قطعاتی که در کیفیت صدای یک امپ بسیار مهم است وجود یک لامپ خلا می‌باشد. در گذشته در تمامی آمپلی فایرها از لامپ خلا استفاده می شد اما با گذشت زمان و روی کار آمدن ترانزیستورها، جایگزین مناسبی برای لامپ‌های خلأ به میدان آمد که از لحاظ هزینه بسیار کمتر از لامپ‌های خلأ بود. اما صدای تولید شده از خازن‌ها هیچگاه کیفیت صدای تولید شده توسط لامپ‌های خلأ را نداشت و به همین دلیل در بسیاری از موارد حرفه‌ای از همان لامپ‌های خلأ قدیمی استفاده می‌شود.





بلندگوی لسلی
بلندگوی لسلی ( بلندگوی گردان ) (به انگلیسی: Leslie Speaker) ساختاریست تشکیل شده از تقویت کننده/بلندگو که برای ایجاد تغییر در صدا با استفاده از اثر داپلر توسط دانلد لسلی اختراع شده.





تقویت‌کننده الکترونیکی

تقویت کننده الکترونیکی وسیله‌ای برای افزایش توان سیگنال می‌باشد. تقویت کننده شکل سیگنال ورودی را حفظ کرده اما دامنه بزرگتر آن را بزرگتر می‌کند.

از تقویت کننده ها برای تقویت صدای سازهای مانند گیتار الکتریک، گیتار باس، ویولن برای تقویت انواع خروجی های صدا مانند دستگاه های پخش خانگی، دستگاه های پخش خودرو و برای تقویت صداهای ضبط شده در مسیر دستگاه های ضبط صدا در استودیو های صوتی استفاده می شود.





بلندگو

بلندگو به گونه‌ای دستگاه مبدل انرژی گفته می‌شود که انرژی الکتریکی را به صدا تبدیل می‌کند. واژه بلندگو ممکن است تنها به یک ترانسدیوسر (که به آن درایور گویند) و یا به سیستمی شامل چندین درایور و همچنین دیگر قطعات الکترونیکی اطلاق شود. بلندگو بخشی از هر سیستم صوتی است و معمولاً تفاوت کیفیت در سیستم‌های صوتی ناشی از این بخش است و بیشترین اعوجاج در صدا در این بخش صورت می‌گیرد.






تاریخچه

فیلیپ رئیس یک بلندگوی الکتریکی را در سال ۱۸۶۳ در تلفن خود نصب کرد که قادر بود صدایی واضح را مجددا تولید کند.





بلندگوی رایانه
بلندگوی رایانه (به انگلیسی: Computer speaker) دستگاهی از دسته سخت‌افزار رایانه است که وظیفه‌ی انتقال صوت به بیرون از رایانه را دارا می‌باشد؛ این دستگاه‌ها بیشتر دارای یک آمپلی‌فایر (تقویت‌کننده الکترونیکی) داخلی با قدرت کم هستند.ارتباط صوتی استاندارد این دستگاه‌ها با رایانه از طریق کابل ۳٫۵ میلی متری (حدود یک هشتم اینچ) که رابط تی‌آراس نام دارد و اغلب به رنگ سبز مغزپسته‌ای است برقرار می‌شود.





مانیتور استودیو

مانیتور استودیو نوعی از بلندگوها است که برای تولید برنامه‌های کاربردی مخصوص استودیو ضبط کاربرد دارد. فرق این بلندگوها با بلندگوهای معمولی در این است که صدای خارج‌شونده از این دستگاه‌ها فاقد هرگونه تغییر و بیس بوده و صرفاً هرآنچه که درآن وارد می‌شود را خارج می‌کند. در اغلب موارد برای تفکیک بهتر صداهای ورودی این قطعه نیازمند تقویت‌کننده الکترونیکی است.






صدا

صدا یا صوت از انواع انرژی است که از تحرک ذرات ماده بوجود می‌آیند به این گونه که یک ذره با حرکت (برخورد) خود به ذره‌ای دیگر ذرهٔ دیگر را به حرکت در می‌آورد و به همین ترتیب است که صوت نشر می‌یابد. صدا ارتعاشیست که توسط حس شنوایی انسان درک میشود. ما معمولاً اصواتی که در هوا حرکت میکنند را میشنویم ولی صدا میتواند در گاز، مایع و حتی جامدات نیز حرکت کند.صدا ص َ (ع اِ) ۞ معرب «سدا» است ۞ و آن آوازی باشد که در کوه و گنبد وامثال آن پیچد و باز همان شنیده شود و در عربی نیز همین معنی را دارد .

سرعت صوت در جامدات بدلیل تراکم زیاد مولکولها، بیشتر از مایعات و در مایعات نیز بیشتر از گازها است. صوت بر خلاف امواج دیگر مانند نور و گرما فقط در محیطی نشر می‌یابد که ماده وجود داشته باشد و این بدین معناست که اگر بر سطح ماه (که هوایی وجود ندارد) انفجاری روی دهد شما هیچ وقت صدای آنرا نمی‌شنوید. از واحد دسی‌بل نیز برای اندازه گیری شدت صوت استفاده می‌کنند. محدودهٔ شنوایی انسان بین ۲۰ تا ۲۰۰۰۰ هرتز می‌باشد.






خصوصیات صدا

ویژگیهای صدا عبارتند از بسامد، طول موج، دامنه و سرعت
بسامد و طول موج

بسامد تعداد تغییرات فشار هوا در هر ثانیه در یک نقطه ی ثابت است که موج صدا در حال گذر از آن میباشد. یک چرخه ی نوسانی ساده در یک ثانیه برابر با یک هرتز است. طول موج برابر فاصله ی بین دو قله ی متوالی بوده که موج در مدت زمان یک چرخه ی نوسانی آنرا طی میکند.






سرعت صوت

سرعت انتشار صوت بستگی به نوع، دما و فشار محیطی که صوت در آن منتشر میشود دارد. در شرایط طبیعی از آنجایی که هوا تقریباً بصورت یک گاز کامل رفتار میکند سرعت صوت وابسته به فشار هوا نخواهد بود. در هوای خشک در دمای 20 درجه ی سانتیگراد سرعت صوت حدوداً 343 متر در ثانیه یعنی حدوداً یک متر در هر 3 هزارم ثانیه است. سرعت صوت همچنین وابسته به بسامد و طول موج است. بنابراین یک صوت 343 هرتزی طول موج یک متر خواهد داشت.

واژهٔ «صدا»، معرب (عربی‌شدهٔ) «سدا»ی پارسی است.






سرعت صوت

سرعت صوت (به انگلیسی: Speed of sound)، فاصله‌ای‌ست که یک موج صوتی در مدت زمان یک ثانیه در یک سیال می‌پیماید. سرعت صوت مشخص می‌کند که این موج در بازهٔ مشخصی از زمان چه مسافتی را طی می‌کند. در هوای خشک و در دمای ۲۰ درجه سانتی‌گراد (۶۸ درجه فارنهایت)، سرعت صوت ۳۴۳٫۲ متر بر ثانیه (۱۱۲۶ فوت بر ثانیه)، ۱۲۳۶ کیلومتر بر ساعت (۷۶۸ مایل بر ساعت) یا به طور تقریبی، یک کیلومتر در سه ثانیه و یا تقریباً یک مایل در پنج ثانیه است. در دینامیک سیالات، سرعت صوت در یک سیال (گاز یا مایع)، به عنوان یک ابزار حساب‌گری نسبی خود سرعت استفاده می‌شود. سرعت یک شیئ (فاصله بر زمان) تقسیم بر سرعت صوت در سیال به عنوان عدد ماخ شناخته می‌شود. اشیایئ که با سرعت بیشتر از یک ماخ حرکت می‌کنند، در سرعت‌های سوپرسونیک حرکت می‌کنند.

سرعت صوت در یک گاز ایده‌آل، مستقل از فرکانس است وتابعی از ریشهٔ دوم دمای مطلق است ولی به فشار یا چگالی آن گاز وابسته نیست. برای گازهای مختلف، سرعت صوت به طور معکوس به ریشه دوم میانگین جرم مولکولی گاز بستگی دارد.

در گفتگوهای مرسوم روزمره، منظور از سرعت صوت، سرعت موج صوتی در سیالِ هوا است. با این حال، سرعت صوت از یک ماده به مادهٔ دیگر متفاوت است. صوت در مایعات و جامدات نامتخلخل سریع‌تر از هوا، حرکت می‌کند. می‌توان گفت سرعت صوت در آب حدود ۴٫۳ برابر (۱۴۸۴ متر بر ثانیه)، و در آهن تقریباً ۱۵ برابر (۵۱۲۰ متر بر ثانیه) سرعت آن در هوای ۲۰ درجه سانتی‌گراد است.

سرعت صوت در فلزات و جامدات، مایعات، درون محیط‌هایی که فشردگی هوای آن‌ها نسبت به محیط آزاد بیشتر است، مناطق سرد و مرطوب و پست تر از دریا، مناطق سرد و مرطوب در کنار دریا، مناطق سرد و مرطوب بالاتر از دریا، مناطق مرطوب بالاتر از دریا نسبت به هوای آزاد در حالت عادی به ترتیب ذکر شده بیشتر است. صوت از محیط‌هایی که مادی نیستند (در آنجا ماده وجود ندارد) نمی‌تواند عبور کند.






صدای انسان

صدای انسان متشکل از صوتی است که با استفاده از تارهای صوتی توسط انسان ساخته شده و برای صحبت کردن ، آواز خواندن ، خندیدن ، گریه کردن ، فریاد زدن و ... مورد استفاده قرار می گیرد.

تارهای صوتی فقط بخشی از صدای اولیه ی انسان را می سازند و به طور کلی مکانیزم تولید صدای انسان را می توان به سه بخش ریه ، تارهای صوتی موجود در حنجره و مفاصل تقسیم بندی کرد.

ریه ( پمپ ) باید جریان هوا و فشار هوای کافی را برای ارتعاش تارهای صوتی تولید کند تارهای صوتی یک دریچه ی ارتعاشی هستند که جریان هوا را از ریه صادر می کند تا پالس های قابل شنیدنی را به صورت یک منبع صدا در حنجره تولید نمایند.عضلات حنجره ، طول و تنش تارهای صوتی را برای ایجاد تن صدایی بسیار خوب تنظیم می کنند .

مفاصل ( بخش هایی از دستگاه صوتی در قسمت فوقانی حنجره شامل زبان ، کام ، گونه ، لب ها و غیره ) ، صدای نشأت گرفته از حنجره را واضح و شفاف و به نوعی فیلتر می کنند و تا حدی می توانند جریان هوای حنجره را به عنوان یک منبع صدا تقویت یا تضعیف نمایند .

تارهای صوتی در ترکیب با مفاصل قادر به تولید آرایه های بسیار پیچیده ای از صدا هستند . تن یا لحن صدا می تواند بیانگر احساسات مختلف انسان باشد : مانند خشم ، تعجب یا شادی .

خواننده ها از صدای انسان به عنوان ابزاری برای ایجاد موسیقی استفاده می کنند .






مهندسی صوت
مهندسی صوت (به انگلیسی: Acoustical engineering) قسمتی از علم صوت است که با ضبط و تکثیر صوت توسط وسایل الکتریکی و مکانیکی سروکار دارد. مهندسی صوت از رشته‌های مختلفی بهره می‌برد از جمله: مهندسی برق، صوت‌شناسی (acoustics)، روانشناسی صوتی (psychoacoustics) و موسیقی.






نوروصوت‌شناسی

نوروصوت‌شناسی یا آکوستو-اپتیک (Acousto-optics) شاخه‌ای از فیزیک است که به بررسی برهم کنش امواج نوری و امواج صوتی و به خصوص پراش لیزر به وسیلهٔ امواج صوتی می‌پردازد.

اپتیک تاریخچه‌ای بسیار طولانی دارد: از زمان یونانیان باستان تا عصر حاضر درست مانند اپتیک، آکوستیک نیز تاریخچه‌ای طولانی دارد که به زمان یونانیان باستان باز می‌گردد. در مقابل آکوستو اپتیک علمی بسیار نوین با تاریخچه‌ای کوتاه‌است. این زمینه از علم با پیش بینی بریلوئن در مورد پراش نور بوسیلهٔ امواج صوتی منتشر شده در ماده در سال ۱۹۲۲ میالادی آغاز شد. این پیش بینی ده سال بعد توسط دبای و سیرز و همچنین لوکاس و بیکارد آزمایش و تایید شد.

مورد خاص پراش مرتبهٔ اول تحت یک زاویهٔ فرود خاص (که بریلوئن هم پیش بینی آن را کرده بود) برای اولین بار توسط ریتوف دیده شد. رامان و نث در سال ۱۹۳۷ یک مدل عمومی تر را طراحی کردند که پراش‌های مرتبهٔ بالاتر را آشکار کند. این مدل بعدها در سال ۱۹۵۶ توسط فریزو توسعه پیدا کرد. مدل وی قابل تنظیم بر مرتبهٔ پراشی مشخص بود.

اساس نوروصوت‌شناسی، تغییر ضریب شکست به خاطر حضور موج صوتی در ماده‌است. موج صوتی یک شبکهٔ ضریب شکست در ماده به وجود می‌آورد و این شبکه توسط موج نوری "دیده" می‌شود. تغییر ضریب شکست که به خاطر نوسان فشار ایجاد شده، به وسیله آثار شکست نور، بازتاب نور، تداخل و پراش قابل شناسایی است.






آکوستو اپتیک

آکوستو اپتیک شاخه ای از فیزیک است که به بررسی برهم کنش امواج نوری و امواج صوتی و به خصوص پراش لیزر به وسیله ی امواج صوتی می پردازد.







مقدمه

اپتیک تاریخچه ای بسیار طولانی دارد: از زمان یونانیان باستان تا عصر حاضر درست مانند اپتیک، آکوستیک نیز تاریخچه ای طولانی دارد که به زمان یونانیان باستان باز می گردد. در مقابل آکوستو اپتیک علمی بسیار نوین با تاریخچه ای کوتاه است. این زمینه از علم با پیش بینیبریلوئندر مورد پراش نور بوسیله ی امواج صوتی منتشر شده در ماده در سال 1922 میالادی آغاز شد. این پیش بینی ده سال بعد توسط دبای و سیرز و همچنین لوکاس و بیکارد آزمایش و تایید شد.

مورد خاص پراش مرتبه ی اول تحت یک زاویه ی فرود خاص (که بریلوئن هم پیش بینی آن را کرده بود) برای اولین بار توسط ریتوف دیده شد. رامان و نث در سال 1937 یک مدل عمومی تر را طراحی کردند که پراش های مرتبه ی بالاتر را آشکار کند. این مدل بعد ها در سال 1956 توسط فریزو توسعه پیدا کرد. مدل وی قابل تنظیم بر مرتبه ی پراشی مشخص بود.

اساس آکوستو اپتیک، تغییر ضریب شکست به خاطر حضور موج صوتی در ماده است. موج صوتی یک شبکه ی ضریب شکست در ماده به وجود می آورد و این شبکه توسط موج نوری "دیده" می شود. تغییر ضریب شکست که به خاطر نوسان فشار ایجاد شده، به وسیله آثار شکست نور، بازتاب نور، تداخل و پراش قابل شناسایی است.






ابزارهای الکترو اپتیکی

ابزار های آکوستو اپتیکی شامل سه گروه زیر هستند:

1- مدولاتور الکترو اپتیکی

با تغییر پارامترهای موج صوتی مانند دامنه، فاز، فرکانس، و قطبش می توان خواص موج نوری را مدوله کرد. برهمکنش نور و صوت همچنین امکان مدوله کردن زمانی و فضایی موج نوری را فراهم می آورد.

یک راه ساده برای مدوله کردن پرتوی اپتیکی عبور نور از محیطی است که در آن موج صوتی به طور متناوب روشن و خاموش شود. وقتی صوت خاموش باشد زاویه ی پراش صفر و نور بی تغییر است. با روشن شدن صوت پراش رخ می دهد و شدت صوت در زوایای پراش افزایش ی یابد. با ثابت نگاه داشتن فرکانس صوتی و تغییر در توان مولد صوت می توان این ابزار را به یک مدولاتور آکوستواپتیکی تبدیل نمود. در طراحی مدولاتور باید به نحوی عمل کرد که ماکزیمم شدت نور در پرتوی پراشیده رخ بدهد. مدت زمانی که طول می کشد صوت از ماده عبور کند نیز محدودیتی بر سرعت سوییچ کردن تحمیل می کند. برای همین پرتوی نوری را تا حد ممکن باریک می کنند. باریک ترین پرتوی نوری ممکن را حد پهنای باند می نامند.

2- فیلتر های الکترو اپتیکی

رابطه ی 4 ارتباطی را میان طول موج صوتی و طول موج نوری نشان می دهد. در واقع پرتوی نوری تابیده شده، اگر دارای تعداد زیادی طول موج باشد فقط در طول موج های خاصی پراکنده می شود. مابقی طول موج ها فیلتر خواهند شد.

3- منحرف کننده های الکترو اپتیکی

با ایجاد یک تغییر در فرکانس صوت می توان تغییر زاویه ای در پرتوی نوری ایجاد کرد.





پژواک

پژواک (اکو)، بازگشت صدا از دیوار یا سایر اشیاست. صدا با سرعتی مشخّص و ثابت (نزدیک به ۳۴۴ متر بر ثانیه) حرکت می‌کند؛ بنابراین می‌توانیم با استفاده از پژواک، فاصلهٔ برخی از اشیا را محاسبه کنیم. دستگاه عمق‌سنج کشتی، برای محاسبهٔ عمق دریا از پژواک بهره می‌گیرد.

پژواک، خفّاش را قادر می‌سازد تا در تاریکی پرواز کند. رادار نیز از خاصیّت پژواک (وبا استفاده از امواج رادیویی) در کشف هدف بهره می‌گیرد.





فرامواد

متامتریال یا فرامواد به ماده مرکبی گفته می‌شود که دارای خواص نامتعارف الکترومغناطیس در ساختار وجودی خود است. آنچه این مواد را غیر معمول کرده است، خاصیت ضریب شکست منفی نور در آنها است، به این معنا که این مواد نور را در جهت مخالف مواد عادی منکسر می‌کنند. مواد الکترومغناطیس تشکیل دهنده آنها می‌تواند با دستکاری مختصر و دقیق ساختارشان «تنظیم» نیزبشود.

این مواد از ترکیب میله‌های ریز و مجموعه‌ای از حلقه‌های فلزی و مانند آنان ساخته شده است که برای اولین بار توسط دیوید اسمیت (David Smith استاد دانشگاه کالیفرنیا) ساخته شد. خواص نامتعارف این مواد سبب شده است از آنها در زمینه‌های مختلف استفاده شود از جمله آنها در مهندسی مایکروویو است که می‌توان به کاربرد در موجبرها، جبران پاشندگی، آنتن‌های هوشمند، لنزها و نمونه‌های فراوان دیگر استفاده کرد.
4:59 pm
پس لرزه
پس لرزه زلزله‌ای است که پس از زلزله اصلی، (mainshock) رخ می‌دهد. پس لرزه در منطقه همان شوک اصلی است، اما همیشه از لحاظ قدرت کوچکتر است. اگر پس لرزه بزرگ تر از شوک اصلی باشد، پس لرزه به عنوان شوک اصلی و شوک اولیه اصلی به عنوان foreshock نام‌گذاری می‌شود. پس لرزه‌ها زمانی به وجود می‌آیند که پوسته در اطراف صفحه گسل جا به جا شده با اثرات شوک اصلی تطبیق داده می‌شود.





ازدحام زلزله‌ها
ازدحام زلزله، سلسله‌ای از زمین لرزه‌هاست که در منطقه‌ای خاص در مدت زمان کوتاهی اتفاق می‌افتند. آنها با زلزله‌هایی که به دنبال آن‌ها مجموعه‌ای از پس لرزه‌هاست متفاوتند با توجه به این واقعیت که هیچ‌کدام از تک زمین لرزه‌ها در دنباله شوک اصلی نیست، بنابراین هیچ‌یک از قدرت قابل توجهی بالاتر از دیگران ندارد. نمونه‌ای از ازدحام زلزله، فعالیت پارک ملی یلو استون(Yellowstone) در سال ۲۰۰۴ می‌باشد.





طوفان زلزله
گاهی اوقات یک سری از زمین لرزه‌ها به صورت طوفان زلزله رخ می‌دهد، که در آن زلزله به گسل پرخوشه ضربه می‌زند، که باعث لرزش و یا توزیع مجدّد تنش از زلزله قبلی ارسال شده، می‌شود. مشابه پس لرزه‌ها اما در بخشهای مجاور گسل، این طوفان‌ها طی سالیان اتفاق می‌افتد، همراه با برخی زلزله‌ها یی که به اندازهٔ زلزله‌های اولیه مخربند. چنین الگویی در دنبالهٔ زلزله‌ها در گسل شمال آناتولی در ترکیه در قرن ۲۰ مشاهده شد و برای خوشه‌های غیرعادی قدیمی از زلزله بزرگ در خاور میانه استنباط شد.



حجم و تعداد دفعات وقوع
حدود ۵۰۰،۰۰۰ زمین لرزه در هر سال وجود دارد که از این تعداد ۱۰۰،۰۰۰ تا می‌تواند احساس می‌شود. زمین لرزهٔ کوچک به طور مداوم در سراسر جهان در مناطقی مانند کالیفرنیا و آلاسکا، ایالات متحده همچنین در گواتمالا، شیلی، پرو، اندونزی، ایران، پاکستان، آزورس در پرتغال، ترکیه، نیوزیلند، یونان، ایتالیا و ژاپن رخ می‌دهد، اما زلزله می‌تواند، تقریباً در هر نقطه‌ای رخ دهد، از جمله نیویورک، لندن و استرالیا. زمین لرزهٔ بزرگتر کمتر اتفاق می‌افتد، رابطه به صورت نمایی است؛ برای مثال، تقریباً ده برابراز زلزله‌ها ی بزرگتر از شدت ۴ در یک دوره زمانی خاص نسبت به زلزله‌های بزرگتر از شدت ۵ رخ می‌دهد. در (لرزه خیزی کم) انگلستان، به عنوان مثال، محاسبه شده‌است که عود به طور متوسط عبارتند از: زلزله ۳٫۷ -- ۴٫۶ در هر سال، زلزله ۴٫۷ -- ۵٫۵ هر ۱۰ سال، و زلزله ۵٫۶ یا بالاتر در هر ۱۰۰ سال است. این نمونه‌ای از قانون گوتنبرگ- ریشتر است. تعداد ایستگاه‌های لرزه‌ای از حدود ۳۵۰ در سال ۱۹۳۱ امروزه به هزارها از افزایش یافته‌است. نتیجتاً، تعداد بیشتری زمین لرزه نسبت به گذشته منتشر می‌شود، اما این به دلیل بهبود ابزار اندازه‌گیری است نه به دلیل افزایش تعداد زمین لرزه‌ها. (USGS) تخمین می‌زند که از سال ۱۹۰۰ تا به حال به طور متوسط ۱۸ زلزله بزرگ (قدر ۷٫۰-۷٫۹) و یک زلزله خیلی بزرگ (قدر ۸٫۰ و یا بیشتر) در هر سال وجود داشته‌است، و این نسبت تقریباً ثابت بوده‌است. در سال‌های اخیر، تعداد زمین لرزه‌های بزرگ در هر سال کاهش یافته‌است، اگرچه این نتیجهٔ نوسانات آماری است، نه از روند سیستماتیک. آمار دقیق بیشتر در اندازه و تعداد زلزله‌ها، از (USGS) در دسترس است. بسیاری از زمین لرزه‌های جهان (۹۰ ٪ و ۸۱ ٪ از بزرگترین) در طول ۰۰۰،۴۰ کیلومتر، منطقه نعل اسبی شکل به نام کمربند زمین لرزه سیرکم پاسیفیک(circum-Pacific seismic belt)، که همچنین به عنوان زنگ آتش اقیانوس آرام شناخته شده، اتفاق می‌افتند. که در اکثرنفاط با صفحهٔ اقیانوس آرام هم‌مرز است. زلزله‌های بزرگ تمایل دارند در طول مرز صفحه‌های دیگر نیز رخ دهند: مثلاً در امتداد کوه‌های هیمالیا. با رشد سریع شهرهای بزرگ مانند مکزیکوسیتی، توکیو و تهران، در مناطق پر خطر زمین لرزه، برخی از زلزله شناسان هشدار می‌دهند که ممکن است زلزله زندگی تا حداکثر ۳ میلیون نفر را بگیرد.




لرزه‌خیزی القا شده

در حالی که اکثر زمین‌لرزه‌ها توسط حرکت صفحات تکتونیکی زمین ایجاد می‌شود، فعالیت‌های انسانی نیز می‌تواند زمین‌لرزه تولید کند. چهار گونه فعالیت‌های اصلی در این پدیده مشارکت می‌کنند: احداث سدها و ساختمان‌های بزرگ، حفاری و تزریق مایع به داخل چاه، استخراج از معادن زغال سنگ، و استخراج نفت.

شاید بهترین نمونه شناخته شده زمین‌لرزه سال ۲۰۰۸ در استان سیچوان چین است، این لرزش منجر به ۲۲۷۶۹، نفر تلفات شد و نوزدهمین زمین‌لرزه مرگبار در تمام دوران‌ها بوده‌است. باور بر این است که سد زیپینگو (Zipingpu)، زیر فشار گسل ۱۶۵۰ فوت (۵۰۳ متر) نوسان یافته؛ این فشار احتمالاً قدرت زمین‌لرزه را افزایش داده و سرعت حرکت گسل را شتاب بخشیده‌است. همچنین بزرگترین زمین لرزه‌ای که در تاریخ استرالیا روی داد، توسط بشر القا شده بود؛ از طریق استخراج از معادن زغال سنگ. شهر نیوکاسل بر بخش بزرگی از مناطق استخراج معادن زغال سنگ ساخته شده بود. زلزله از گسلی که به خاطر استخراج میلیون‌ها تن سنگ معدن ایجاد شده بود، تولید شد.

در سال ۲۰۱۱ میلادی، وقوع تعداد ۱۱ زمین‌لرزه نامعمول در شهر یانگ استون در ایالت اوهایوی آمریکا باعث شد که پژوهشگران به این نتیجه برسند که فعالیت‌های اکتشاف گاز و تزریق مایع به درون لایه‌های زمین در آن منطقه باعث فشار بر لایه‌ها و عامل بروز زمین‌لرزه شده‌اند.



اندازه‌گیری شدت و محل زلزله
زلزله را می‌توان توسط لرزه نگار(seismometers) تا فواصل بسیار بزرگ ثبت کرد، چرا که امواج لرزه‌ای حتی از داخل زمین هم عبور می‌کنند. قدر مطلق اندازهٔ زلزله مطابق قرارداد توسط اعداد در مقیاس قدر گشتاور (که قبلاً در مقیاس ریشتر، از قدر ۷ باعث آسیب جدی و بزرگ بیشتر مناطق گزارش شده)، در حالی که احساس قدر با استفاده از مقیاس مرکالی گزارش می‌شود. هر لرزش انواع امواج لرزه‌ای را تولید می‌کند که با سرعت‌های مختلف ازداخل سنگ عبور می‌کنند: امواج طولی P (امواج ضربه‌ای یا فشاری) امواج عرضی S (هر دو امواج بدن) و امواج سطحی مختلف (امواج ریلی). سرعت انتشار امواج لرزه‌ای حاصل از محدوده تقریبی ۳ کیلومتر بر ثانیه تا ۱۳ کیلومتر بر ثانیه، بسته به تراکم و کشش از مقدار میانه تغییر می‌کند. در داخل کره زمین امواج ضربه‌ای یا P بسیار سریعتر از امواج S حرکت می‌کنند. (تقریباً ۱٫۷: ۱). تفاوت در زمان سفرامواج از کانون به رصدخانه برای اندازه‌گیری فاصله‌است و می‌تواند منابع لرزه و ساختار درون زمین را نشان دهد. همچنین عمق کانون (hypocenter) را می‌توان به طور تقریبی محاسبه کرد. قانون کلی: به طور متوسط، فاصله (کیلومتر) به زلزله برابر است با زمان (ثانیه) بین امواج P و S. انحراف خفیف به دلیل ناهمگن بودن لایه‌های زیرسطحی زمین است.



آثار زمین لرزه
لرزاندن و گسیختگی زمین
لرزاندن و گسیختگی زمین اثرات اصلی ایجاد شده توسط زمین لرزه هستند، اساساً منجر به آسیب زیاد یا کم ساختمان‌ها و دیگر سازه‌های سفت و سخت می‌شود. شدت عوارض بستگی به ترکیب پیچیدهٔ بزرگی زلزله، فاصله از مرکز زلزله، شرایط زمین‌شناسی و geomorpholical محل دارد که باعث تقویت یا کاهش انتشار امواج می‌شود. تکان زمین را با شتاب زمین اندازه‌گیری می‌کنند. ویژگی‌های خاص زمین‌شناسی، geomorphological و geostructural محل می‌توانند میزان لرزش زمین را حتی در زلزله‌های کم شدت افزایش دهند. این اثر، سایت یا تقویت محلی نامیده شده‌است. اصولاً به دلیل انتقال حرکت لرزه‌ای از خاک سخت به خاک سطحی نرم، تمرکز و ذخیرهٔ انرژی لرزه‌ای در کانون به علت نوعی تنظیم هندسی می‌باشد. گسیختگی زمین در واقع شکستن آشکار و جابه جایی سطح کره زمین در طول گسل است که ممکن است در مورد زلزله بزرگ مترها باشد. گسیختگی زمین خطر بزرگی برای سازه‌های مهندسی بزرگ مانند سدها، پل‌ها و ایستگاه‌های قدرت هسته‌ای است در نتیجه نیاز به نقشه برداری دقیق از گسل‌های موجود برای شناسایی هر گونه احتمال شکستن سطح زمین در طول مدت عمر سازه وجود دارد.




رانش زمین و بهمن
زلزله، همراه با طوفان شدید، فعالیت آتشفشانی، برخورد موج ساحلی، و آتش سوزی بزرگ، می‌تواند منجر به عدم ثبات شیب زمین وخطر بزرگی در زمین‌شناسی شود. خطر زمین لغزش حتی ممکن است در حالی که پرسنل اورژانس اقدام به نجات می‌کنند باقی بماند.




آتش
زلزله می‌تواند با صدمه زدن به قدرت برق یا خطوط گاز منجر به آتش سوزی شود. در صورت صدمه به شبکه آبرسانی و از دست دادن فشار، جلوگیری از گسترش آتش نیز ممکن است مشکل شود. برای مثال، مرگ و میر در زلزله ۱۹۰۶ سان فرانسیسکو بیشتر توسط آتش سوزی بود تا از زلزله.




روانگرایی خاک
روانگرایی خاک یا شبیه به مایع عملکردن خاک وقتی رخ می‌دهد که، به خاطر تکانها، دانه‌های مواد اشباع شده با آب (مانند شن و ماسه) به طور موقت استحکام خود را از دست داده و از شکل جامد به حالت روان تبدیل شوند. روانگرایی خاک می‌تواند ساختارهای سفت و سخت، مانند ساختمان‌ها و پل‌ها را، کج کند یا به ساختارهای فرورونده تبدیل کند. برای مثال، در زلزله ۱۹۶۴ آلاسکا، روانگرایی خاک باعث شد ساختمان‌های بسیاری در زمین فروروند و در نهایت به روی خود فروبریزند.
ساعت : 4:59 pm | نویسنده : admin | مطلب قبلی | مطلب بعدی
سی ریشتر | next page | next page